COMUNE DI CESENA

PIANO URBANISTICO ATTUATIVO 10/06 AT4a CALABRINA

Via Cervese

DETERMINAZIONE n. 1330/2008

COMMITTENTE: CECCARONI CAMBI VOGLIA PIER LUIGI

nato a Bergamo il 04/08/1935

residente in Cesena via Corso Comandini, n.82

c.f.: CCC PLG 35M04 A794H

Oggetto della tavola:

CALCOLO VASCA DI LAMINAZIONE

VERIFICA VOLUME DI LAMINAZIONE (per pioggia di 2 ore e T.R.=30anni)

CALCOLO LUCE A BATTENTE

Il Progettista:

Studio Tecnico Dott. Ing. Angelo Farneti

Data:

Maggio 2012

STUDIO TECNICO ING. ANGELO FARNETI: Viale G.Bovio, 68 -Cesena (FC)- Tel.:0547/29829;

Fax:0547/362746; e-mail: studio.farneti@iol.it

PROPRIETA' RISERVATA: questo disegno non potrà essere riprodotto o reso noto a terzi senza la nostra autorizzazione; in caso contrario si agirà a termini di

FILE: invarianza idraulica CALABRINA8

Relazione di calcolo Invarianza Idraulica

Art.9 Piano Stralcio di Bacino per il Rischio Idrogeologico Autorità dei Bacini Regionali Romagnoli

RIFERIMENTO:

richiedente - Ceccaroni Cambi Voglia Pier Luigi - intervento - lottizzazione Calabrina AREA PRIVATA lotto 1 + AREA art.42,08 bis

La relazione utilizzata è la seguente:

 $W = W^0 (\phi / \phi^0)^{1/(1-n)} - 15 I - W^0 P$

in cui

w⁰ = 50 mc/ha volume di invaso di riferimento

 $\phi^0 = 0.9 \text{ Imp}^0 + 0.2 \text{ Per}^0$ coefficiente di deflusso prima della trasformazione

 ϕ = 0,9 Imp + 0,2 Per coefficiente di deflusso dopo la trasformazione

n = 0,48 esponente delle curve di possibilità climatica di durata inferiore all'ora, stimato nell'ipotesi che le percentuali di pioggia oraria

cadute nei 5', 15' e 30' siano rispettivamente il 30%, 60% e 75%

Imp⁰, Imp frazioni di area da ritenersi impermeabili prima e dopo l'intervento

Per⁰, Per frazioni di area da ritenersi permeabili prima e dopo l'intervento

Superficie complessiva 12004,00 mq

Superfici di progetto con volume di riferimento 50 mc/ha (non trasformate):

fabbricati e pertinenze esistenti 0,00 mq

tot. P 0,00 mq

Superfici di progetto con volume di riferimento 15 mc/ha (trasformate):

superficie complessiva 12004,00 mq

tot. I 12004,00 mg

Si considerano permeabili, prima della trasformazione, le seguenti superfici:

superficie complessiva 12237,00 mq (10187+2050)

tot, Per⁰ 12004,00 mg

Si considerano impermeabili, prima della trasformazione, le seguenti superfici:

tot. Imp⁰ 0,00 mq

Si considerano permeabili, dopo la trasformazione, le seguenti superfici:

verde in SE 575,90 mq (550,5+25,4) quota parte (50%) pav. dren. in SE 1453,00 mq (2498+408 x 0,50)

tot, Per 2028,90 mg

Si considerano impermeabili, dopo la trasformazione, le seguenti superfici:

 superficie coperta
 6712,10 mq
 (5259,5+1452,60)

 quota parte (50%) pav. dren. in SE
 1453,00 mq
 (2498+408 x 0,50)

quota impermeabile 1810,00 mq

tot. imp 9975,10 mq

Essendo	A =	12004 mq	risulta	$\phi^0 =$	0,200
	Per ⁰ =	12004 mq		φ =	0,782
	$Imp^0 =$	0,00 mq		_	
	Per =	2028,9 mq		$\phi / \phi^0 =$	3,908
	Imp =	9975,1 mq			

Pertanto il volume minimo di invaso atto alla laminazione delle piene risulta (per ettaro)

w = 673 mc/ha

Che riferito alla superficie di progetto diventa

W//A\= 80//68 mic

Sificalizzanordnevasanerditaminezioneroelaunvoluntvoteleparasielicaatuatet

Verifica Volume di Laminazione

per pioggia di 2 ore e T.R. = 30 anni

RIFERIMENTO:

richiedente - Ceccaroni Cambi Voglia Pier Luigi - intervento - lottizzazione Calabrina AREA PRIVATA lotto 1 + AREA art.42,08 bis

Si verifica la sufficienza del volume di laminazione al contenimento della piena per piogge di 2 ore di durata e tempo di ritorno 30 anni.

Noti

Q_u = 15-l/sec portata in uscita per Ha di intervento (= 72 mc/ora)

d = 2 ore durata dell'evento meteorico

T.R. = 30 anni tempo di ritorno dell'evento meteorico

cui corrispondono

a = 52 mm/ora

n = 0.29

Si calcola il volume in entrata nell'invaso di laminazione durante l'evento meteorico pari a

$$V_e = V_h \times \phi \times S$$

in cui

 $V_h = 10 \text{ x h}$ con $h = a \text{ x d}^n$ pioggia caduta durante l'evento

 ϕ = 0,782 mq coeff. di deflusso dopo la trasformazione

S = 12004 mg area di intervento (pari a 1,2004 Ha)

pertanto $h = 52 \times 2^{-0.29} = 63,58 \text{ mm}$

da cui $V_h = 10 \times 63,58 = 635,8 \text{ mc/Ha}$

II volume in entrata risulta pertanto pari a $V_e = 635.8 \times 0.782 \times 1.2004 = 596.57 \text{ mg}$

Si calcola il volume in uscita dall'invaso di laminazione durante l'evento meteorico pari a

 $V_u = Q_u \times S \times d$

volume in uscita che risulta pertanto pari a $V_u = 54,00 \times 1,2004 \times 2 = 129,64 \text{ mc}$

Si ottiene quindi $\Delta V = V_e - V_u = 466,93$ mc < 807,58 mc

Pertanto l'invaso di laminazione risulta sufficiente anche per l'evento esaminato.

Calcolo luce a battente

RIFERIMENTO:

richiedente - Ceccaroni Cambi Voglia Pier Luigi - intervento - lottizzazione Calabrina AREA PRIVATA lotto 1 + AREA art.42,08 bis

La relazione utilizzata è la seguente:

$$A = Q / (k\sqrt{2 \times g \times h_{utile}}))$$

in cui

S = 12004 mq area di intervento

Q (portata) = 15 l/sec per Ha di intervento

k = 0,61 coefficiente di contrazione vena

 $g = 9,81 \text{ m/sec}^2$

 $h_{utile} = 1,30 \text{ m}$

pertanto Q = 18,006 l/sec pari a 0,01801 m³/sec

con cui calcoliamo A = 0,0058 mq

corrispondente ad una sezione circolare $\phi = 8,63$ cm

Per ragioni di sicurezza di funzionamento si adotta comunque $1\phi 100$.

Relazione di calcolo Invarianza Idraulica

Art.9 Piano Stralcio di Bacino per il Rischio Idrogeologico Autorità dei Bacini Regionali Romagnoli

RIFERIMENTO:

richiedente - Ceccaroni Cambi Voglia Pier Luigi intervento - lottizzazione Calabrina - AREA PUBBLICA

La relazione utilizzata è la seguente:

 $W = W^0 (\phi / \phi^0)^{1/(1-n)} - 15 I - W^0 P$

in cui

w^o = 50 mc/ha volume di invaso di riferimento

 $\phi^0 = 0.9 \text{ Imp}^0 + 0.2 \text{ Per}^0$ coefficiente di deflusso prima della trasformazione

 ϕ = 0,9 Imp + 0,2 Per coefficiente di deflusso dopo la trasformazione

n = 0,48 esponente delle curve di possibilità climatica di durata inferiore all'ora, stimato nell'ipotesi che le percentuali di pioggia oraria

cadute nei 5', 15' e 30' siano rispettivamente il 30%, 60% e 75%

Imp⁰, Imp frazioni di area da ritenersi impermeabili prima e dopo l'intervento

Per⁰, Per frazioni di area da ritenersi permeabili prima e dopo l'intervento

Superficie complessiva

16332,00 mq

(14952+1380)

Superfici di progetto con volume di riferimento 50 mc/ha (non trasformate):

scolo esistente

1380,00 mq

tot. P

1380,00 mq

Superfici di progetto con volume di riferimento 15 mc/ha (trasformate):

area agricola

14952,00 mg

tot. I

14952,00 mg

Si considerano permeabili, prima della trasformazione, le seguenti superfici:

superficie complessiva

16332,00 mg

tot. Per⁰

16332,00 mq

Si considerano impermeabili, prima della trasformazione, le seguenti superfici:

tot. Imp⁰

0.00 mg

Si considerano permeabili, dopo la trasformazione, le seguenti superfici:

verde pubblico da standard 5039,80 mq area futura circonvallazione 2917,00 mq aiuole 538,35 mq scolo esistente 1380,00 mq

quota parte (50%) pav. dren. parcheggio 1068,00 mq (2136 x 0,50)

tot. Per 10943,15 mg

Si considerano impermeabili, dopo la trasformazione, le seguenti superfici:

viabilità

1172,20 mg

	vra parche	eggio pubblico dren. parchego	gio Imp	1187,60 m 58,25 m 1902,80 m 1068,00 m 5388,85 m	nq (4038,80-2136) 2136 x 0,50)
Essendo	A = Per ⁰ =	16332 mq 16332 mq		risulta	$\phi^0 = \phi = 0$	0,200 0,431
	Imp ⁰ = Per = Imp =	0,00 mq 10943,15 mq 5388,85 mq			φ / φ ⁰ =	2,155

Pertanto il volume minimo di invaso atto alla laminazione delle piene risulta (per ettaro)

w = 201 mc/ha

Che riferito alla superficie di progetto diventa

Considerando utile alla laminazione l'80% del volume della linea di progetto risulta

capacità linea di progetto lunghezza linea di progetto volume in linea	ф	500	0,20 mc/ml 95,00 ml 18,64 mc
capacità linea di progetto lunghezza linea di progetto volume in linea	ф	400	0,13 mc/ml 161,00 ml 20,22 mc
capacità linea di progetto lunghezza linea di progetto volume in linea	ф	315	0,08 mc/ml 41,00 ml 3,19 mc

80% volume di laminazione in linea

33,65 mc

Da cui si ricava la reale volumetria necessaria alla laminazione pari a circa

24947 (dilite

Sirealizza incomicasoum vascadilaminazione con dimensioni partiare loa satame.

Verifica Volume di Laminazione

per pioggia di 2 ore e T.R. = 30 anni

RIFERIMENTO:

richiedente - Ceccaroni Cambi Voglia Pier Luigi intervento - lottizzazione Calabrina - AREA PUBBLICA

Si verifica la sufficienza del volume di laminazione al contenimento della piena per piogge di 2 ore di durata e tempo di ritorno 30 anni.

Noti

Q_u = 15 l/sec portata in uscita per Ha di intervento (= 72 mc/ora)

d = 2 ore durata dell'evento meteorico

T.R. = 30 anni tempo di ritorno dell'evento meteorico

cui corrispondono

a = 52 mm/ora

n = 0.29

Si calcola il volume in entrata nell'invaso di laminazione durante l'evento meteorico pari a

$$V_e = V_h \times \phi \times S$$

in cui

 $V_h = 10 \times h$ con $h = a \times d^n$ pioggia caduta durante l'evento

 ϕ = 0,543 mq coeff. di deflusso dopo la trasformazione

S = 3820,3 mq area di intervento (pari a 0,3820 Ha)

pertanto $h = 52 \times 2^{-0.29} = 63,58 \text{ mm}$

da cui $V_h = 10 \times 63,58 = 635,8 \text{ mc/Ha}$

II volume in entrata risulta pertanto pari a $V_e = 635.8 \times 0.543 \times 0.3820 = 131,99 \text{ mc}$

Si calcola il volume in uscita dall'invaso di laminazione durante l'evento meteorico pari a

$$V_u = Q_u \times S \times d$$

volume in uscita che risulta pertanto pari a $V_u = 54,00 \times 0,3820 \times 2 = 41,26 \text{ mc}$

Si ottiene quindi $\Delta V = V_e - V_u = 90,73$ mc < 328,11 mc

Calcolo luce a battente

RIFERIMENTO:

richiedente - Ceccaroni Cambi Voglia Pier Luigi intervento - lottizzazione Calabrina - AREA PUBBLICA

La relazione utilizzata è la seguente:

$$A = Q / (k\sqrt{2 \times g \times h_{utile}}))$$

in cui

S = 16332 mq area di intervento

45.16

Q (portata) = 15 l/sec per Ha di intervento

k = 0.61 coefficiente di contrazione vena

 $g = 9,81 \text{ m/sec}^2$

 $h_{utile} = 1,30 \text{ m}$

pertanto Q = 24,498 l/sec pari a $0,02450 \text{ m}^3/\text{sec}$

con cui calcoliamo A = 0,0080 mq

corrispondente ad una sezione circolare $\phi = 10,06$ cm

Per ragioni di sicurezza di funzionamento si adotta comunque 1\psi125.