
6 May 2011

Green Energy 2011

BUILDING THE SEAP

OF CESENA

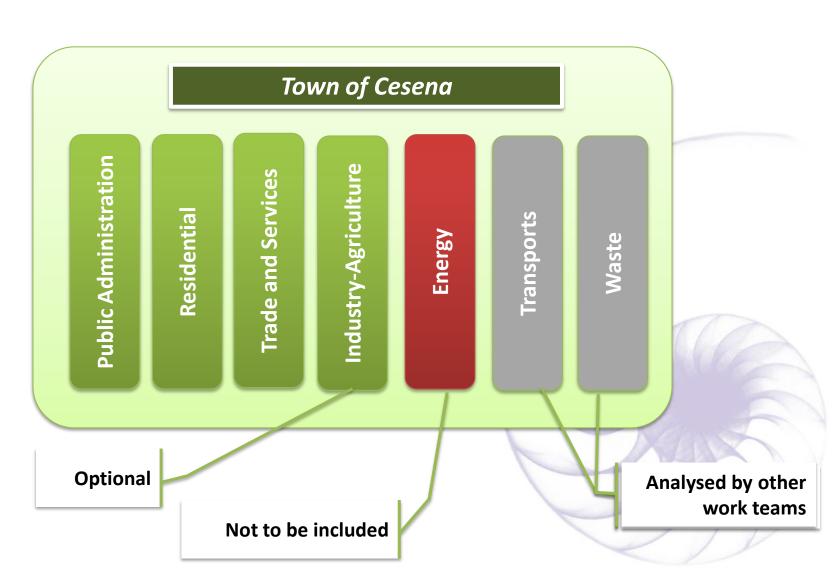
© 04/05/2011 – ROMAGNA INNOVAZIONE; FOR DISCUSSION PURPOSES ONLY: ANY OTHER USE OF THIS PRESENTATION - INCLUDING REPRODUCTION FOR PURPOSES OTHER THAN NOTED ABOVE, MODIFICATION OR DISTRIBUTION - WITHOUT THE PRIOR WRITTEN PERMISSION OF ROMAGNA INNOVAZIONE IS PROHIBITED

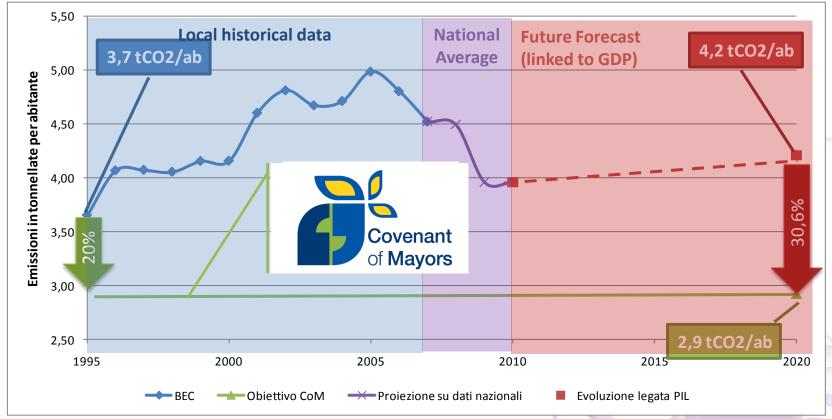
Scope and Objectives

Evaluation Methodology

Building the Reference Scenario

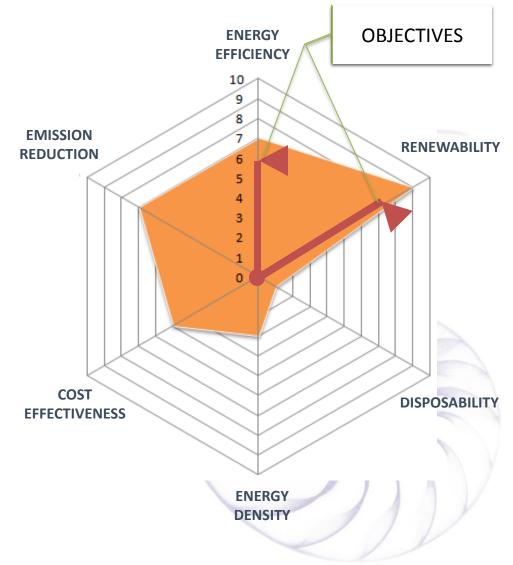
Governance and Monitoring


Conclusions



SECOND: DEFINE AND QUANTIFY YOUR OBJECTIVE

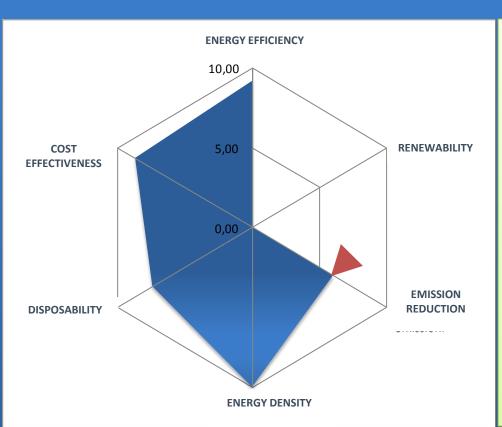
Objective: reduce per-capita emissions down to **2.9 tons** (20% less than in 1995, our Reference Year); this is equivalent to an absolute reduction of over **130 thousand tons of CO2 equivalent** (assuming 101 thousand inhabitants in 2020)



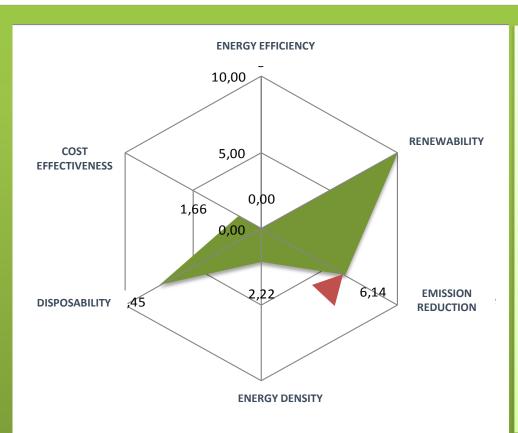
- From a scientific point of view, the dividing line goes between qualitative and quantitative impact statements
- The translation into a single unit, e.g. monetary values or CO2 emission savings, however it is done, is losing part of the message and may not allow a fair assessment
- It is better to use an **impact profile**: each type of impact is evaluated in its own units, but in the same way for every energy system, so that it tells the decision-maker where two energy systems actually differ from each other
- In order **to choose** between two alternative energy systems performing in different ways over the defined set of impacts, **the decision-maker must assign weights to different kinds of impacts** (e.g. comparing greenhouse warming impacts of fossil systems with noise and visual impacts of wind turbines)
- The assignment of weights to different impact categories is the central political input into the decision process

- Our methodology is based on impact profiles made of 6 evaluation indicators
- Each indicator is evaluated in its own units, but a final re-scaling on a [0-10] score axis is performed in order to allow an easier comparison
- The decision maker is presented with a radar diagram, the shape of which is related to the characteristics of the energy system
- We can set numeric objectives on each axis of the diagram and easily spot whether they are achieved or not

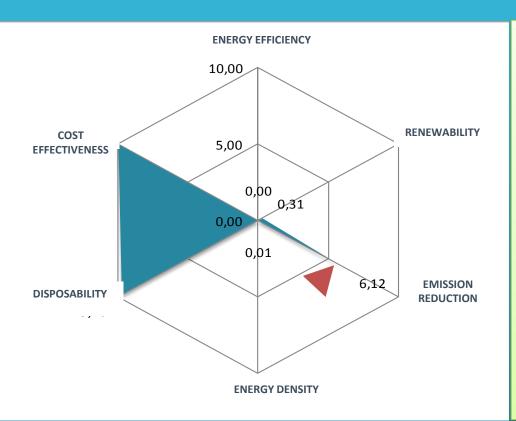
EVALUATION INDICATORS


-
odc
Aeth
tion N
'alua [;]

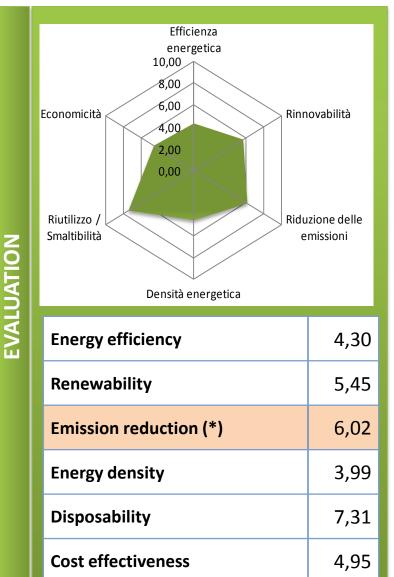
Energy efficiency	 Primary energy saved, compared to the global primary energy consumed in the BAU scenario 		
Renewability	 Renewable primary energy production, compared to the global primary energy consumed 		
Emission Reduction	 Percentage of CO2 reduction with respect to the global emissions in the BAU scenario 		
Energy density	 Ratio between the energy produced or saved and the required area (it measures the land extension required by the energy system) 		
Disposability	 Estimate of the ease of disposal of the energy infrastructure at the end of life (hazards, method of disposal, recycling opportunities,) 		
Cost Effectiveness	 Ratio between the emission saved and the monetary costs 		

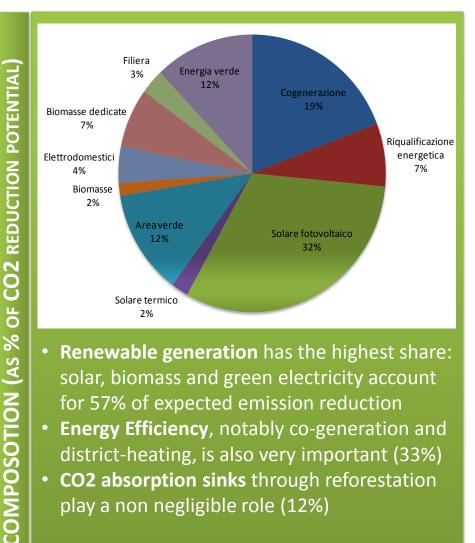

INDICATOR	Formula	Unit
Energy efficiency	Primary energy amount saved (tep) Global energy consume (tep)	%
Renewability	Primary energy amount produced through renewable sources (tep) Global energy consume (tep)	%
Emission reduction	Emission reduction amount (tCO2) Global emission (tCO2)	%
Energy density	Energy produced or saved amount Size	toe/m²
Disposability	$\sum_{w \in ghted} Environmental impact, hazard, recycle and life cicle$	Score [010]
Cost effectiveness	Emission reduction amount (tCO2) Global cost	tCO2/ M€

- Combined generation of electricity and heat from fossil fuels (mainly methane gas)
- It is fundamentally a technique improving the generation efficiency, therefore it shows a high score on the Energy Efficiency axis
- Because the primary energy source is a fossil fuel
 - The Renewability score is 0
 - The Energy Density is quite good
- The underlying technology is mature, therefore the Cost-effectiveness is also good



- Solar PV rely on a totally renewable primary energy source, therefore it achieves the maximum score on the Renewability axis
- The Energy Efficiency score is 0, because there's no net energy saving
- Powerful technique for Emission Reduction, because Italy's emission factors for electricity generation are relatively high
- The technology of standard PV panels is quite mature, although it is still relatively expensive (public incentives not considered)
- As many other renewable energy systems, it suffers from relatively low Energy Density


SINGLE TECHNIQUE EVALUATION – FORESTED AREAS



- Reforestation is a peculiar technique of emission reduction, as it does not generate nor save energy, but it can reduce atmospheric CO2 by phytomass absorption
- Energy Efficiency and Renewability indicators will be 0 because no net energy is generated nor saved
- Energy Density is measured as the energy content of the produced phytomass, and is very low
- It is very cost-effective per unit of CO2 absorbed, and of course Disposability has the highest score

EVALUATION OF ENTIRE SCENARIOS

- **Renewable generation** has the highest share: solar, biomass and green electricity account for 57% of expected emission reduction
- Energy Efficiency, notably co-generation and district-heating, is also very important (33%)
- CO2 absorption sinks through reforestation play a non negligible role (12%)

Rinnovabilità

Riduzione delle

emissioni

Scenario 1 vs Scenario 2 Efficienza Efficienza **Evaluation Methodology** energetica energetica 10,00 10,00 8,00 8,00 60 6,00 Rinnovabilità Fconomicità Economicità 4,00 Process of decision making based on 2,00 0,00 the assignment of weights to Riutilizzo / Riutilizzo iduzione delle Smaltibilità Smaltibilità emissioni the evaluation indicators Densità energetica Densità energetica 35,00% 30,00% 7,00 25,00% 20,00% 6,00 15,00% 10,00% 5,00 5,00% 4,00 0,00% Riduzione delle emissioni Densizenereetica thicienta energetica Rivilit205mattbilita Rinnovabilità Economicità 3,00 2,00 1,00 0,00

IDEE, PROGETTI E SOLUZIONI.					
					А
Indicatore di dettaglio 🛛 🔽	Valore 🔽 🛛 Unità globa	le 🔽 🛛 Unità p.c. 🔽	2		ifficienza nergetica 0
Produzione elettrica	126 kWh/mq*anno	kWh/mq*anno	3		
Area residenziale del comune	1.698.953 mq	mq		Economicità 5,0	Rinnovabilità
Area industriale del comune	1.698.953 mq	mq	4		0,00
Area pannellabile residenziale	20%		5	1,66	0
Area pannellabile industriale	20%				1,90
Area pannellabile del comune	679.581 mq	mq	6	Riutilizzo/Smalti 7,45 bilità	2,22 Riduzione delle emissioni
Producibilità totale	0,846 GWh(e)	MWh(e)/ab			=
Consumo totale Comune di Cesena	2,30 ktep	tep/ab	7		Densità
Quota rinnovabile BAU 2020	9,04%		8	e	nergetica
				5,00	
Indice quota rinnovabile		3,19	02	/M€ 4,00	
Indice riduzione emissioni		1.00	02	/M€ 2,00	
malce mailtone emission		1,90		1,00	
Indice econom	ico			1,66	

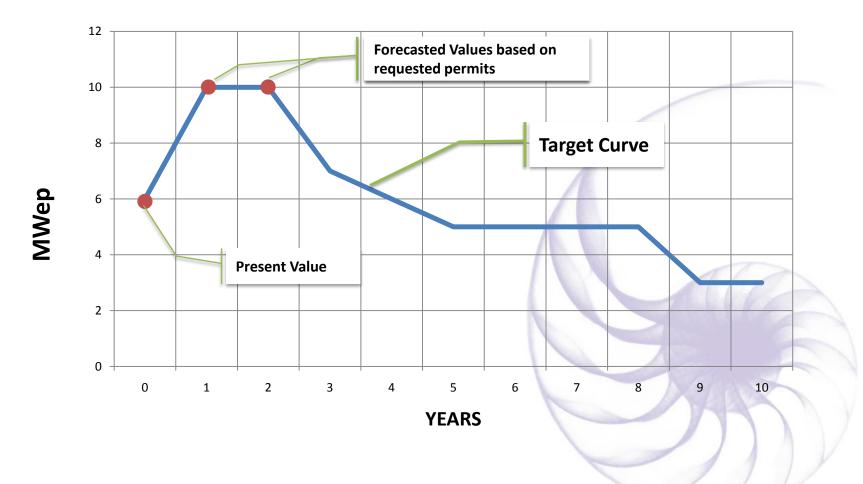
A parametric tool has been developed to evaluate alternative energy systems and tune the Reference Scenario according to the inevitable changes in the external context over the 10-year span of the Energy Plan

The tool can be integrated with a monitoring software to give the Town Energy Manager a valuable governance tool

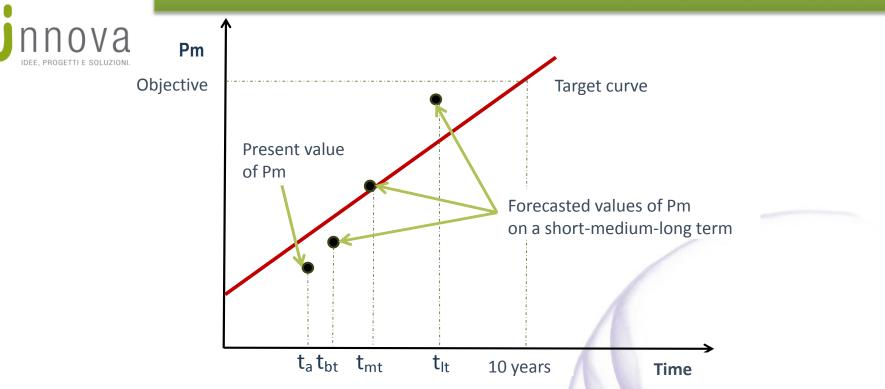
- Short-list possible solutions
- Evaluate absolute potential and scalability of each one, relying only on technical (i.e. non-market, non-political, noncontextualized) inputs
- Build different scenarios achieving the same primary objective of emission reduction
- Compare them by assigning political weight to the 6 evaluation indicators
- Select a "candidate scenario"
- Perform an accurate reality check with respect to the local context (market trends, social and economic situation, available resources, public incentives, etc.)
- Tune the candidate scenario to obtain the Reference Scenario

REFERENCE SCENARIO

Reference Scenario(2020)	
Solution	Description
Reforestation	1,6 km ² reforested area
Waste biomass	Combined electricity and heat production of ${\bf 7}~{\bf GWh}_t$ and ${\bf 5}~{\bf Gwh}_e$ from waste biomass
Energy efficiency of house appliances	11 GWh_e yearly savings by improving the energy class and the finale use of house appliances
Co-generation	Co-generation plants and district-heating networks producing 146 ${\rm GWh}_{\rm t}$ and 102 ${\rm Gwh}_{\rm e}{\rm per}$ year
Building sector	Improving the energy performance of 18% of residential building surface (from E to C energy class) and building new class A or B houses
Solar PV	Solar PV plants for 61 MW_ep , deployed preferably on roof tops and parking lots
Solar thermal	Solar thermal panels (mainly residential) for 8,2 MW_tp
Energy crops	5 $\rm km^2$ land area (not used for food production) dedicated to the cultivation of energy crops to produce combined electricity (13 GWh _e) and heat (16 GWh _t)
Energy efficiency in the industry	Better (6%) energy efficiency of industrial processes could save yearly 8 GWh _e
Green electricity	Procurement of green electricity for 32 Gwh_e per year



Solution	Monitoring Parameters (Pm)
Co-generation	Number of co-generation plants deployed, peak thermal power, plant load factor
	Extension of district heating network
Building sector	Renovated building surface, energy class
Waste biomass	Weight of collected dry biomass; number of co-generation plants deployed, peak thermal power, plant load factor
Energy crops	Cultivated area; weight of collected dry biomass; number of co- generation plants deployed, peak thermal power, plant load factor
Solar PV	Number of PV plants and corresponding peak power deployed
Solar thermal	Number of solar thermal plants and corresponding peak power deployed
Forested areas	Reforested land extension
Energy efficiency of house appliances	Electricity consumption of residential sector
Energy efficiency	Electricity consumption of industrial sector
in the industry	
Green electricity	Total green electricity acquired in the relevant timeframe



Example: Solar PV planned deployment rate

MONITORING PROCESS

Measured and forecasted values in line with the target curve

• No change required

Measured and forecasted values higher (on weighted average) than the target curve

• The Energy Manager autonomously modifies the target curve increasing the short term values and decrerasing the long term ones, so as to maintain fixed the final objective

Measured and forecasted values lower (on weighted average) than the target curve

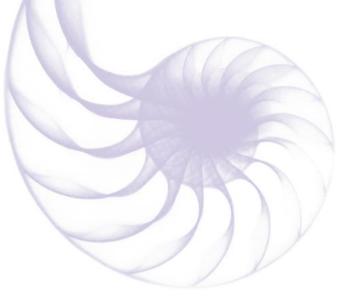
• The Energy Manager asks the subject matter experts to modify the target curve; if the final objective cannot be reasonably maintained, the structure of the entire Reference Scenario must be modified

Innovative Evaluation Methodology

- 6-indicator impact profiles to evaluate alternative energy systems with the aim of providing the decision makers with the richest set of data
- Definition of an easy-to-compare score matrix

Consistent Monitoring Process

- Definition of a monitoring process that takes into account historic as well as forecasted data to provide better guidance to the Energy Manager
- The monitoring process can be integrated with the evaluation methodology to provide a powerful way to tune the Energy Plan over the 10-year time span


Supporting tools

 The evaluation methodology and the monitoring process can be supported by a parametric software tool that can both help the Energy Manager monitor the progress of the plan and provide a high-level decision cockpit for political decision makers

THANK YOU

Any questions?

